humic acid

Plate Settler Capture Velocity, Fall 2011

Ruonan Zhang, Xiaocan Sun, Yizhao Du

Abstract:

Through lab research we seek to understand the different influence of coagulant type, capture velocity, coagulant dose and raw water turbidity on the performance of the plate settler in AguaClara plants. We are using a tube settler to simulate those plate settlers in the full-scale plants. Through various changes in operating conditions, we expect to determine the best parameters, and this is of great significance in real practice. After that, we are going to pick out some of the best conditions and repeat the experiments with natural organics in order to see how humic acids affect overall performance.

Humic Acid, Kaolin, Floc/Sed Model - Fall 2017

Ziwei (Vanessa Qi), Ye Rin (Erin) Kim, Wen Tien Dai

Abstract:

The Fall 2017 Humic Acid team was motivated to study the impact of the humic acid particles in water. Throughout the Fall 2017 semester, the team plans to explore the existence of optimal coagulant dosage that gives the lowest effluent turbidity at various humic acid concentrations. Then, the team seeks to set up a mathematical model that calculates the optimal coagulant dosage vs. humic acid concentration. A series of controlled experiments will be conducted with a computer software.

image2.PNG

Lab Set-up

Humic Acid, Kaolin, Floc/Sed Model - Spring 2019

Matthew Lee, Walter Guardado, Carolyn Wang

Abstract:

This semester, samples of HA at 5 mg/L, 10 mg/L and 15 mg/L and concentrations of clay at 10 NTU, 100 NTU and 100 NTU are tested separately to find the respective absorbances. The individual absorbances recorded are used to compare with the mixture of different concentrations of clay and HA to find the additive aspects of the mixture. The results of these tests will investigate how absorbance and spectrophotometry can be used to quantify the concentrations of humic acid and clay in water mixtures. A mathematical model that relates the concentrations of clay and humic acid to the stream's absorbance and turbidity will be developed. This model will increase the capabilities of AguaClara plants and technology in measuring the dirtiness of nearby water sources. The model will also give insight on how efficient and effective current processes are in removing humic acid from water

aguaclara.png

Humic Acid, Floc/Sed Model - Fall 2019

Lawrence Li, Maya Shanti, Carolyn Wang

Abstract:

The Fall 2019 Humic acid subteam seeks explore the relationship between optimal coagulant dosages and effluent absorbance. Past teams have tested optimal concentration for removing HA. Based on previous work, the optimal coagulant concentration appears naround 1.5 mg/L. For this semester, the team plans to test more coagulant concentrations and humic acid concentration and find the optimal dosage to lower the absorbance of the effluence. The AccuView spectrophotometer will be used to measure the effluent absorbance and measure the efficiency of removing color. The concentrations of HA and coagulant is set based on the data collected from water plants.

aguaclara.png